
PIT: Optimization of Dynamic Sparse 
Deep Learning Models via Permutation 

Invariant Transformation

Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Lingxiao Ma, Yuqing 
Yang, Fan Yang, Chengruidong Zhang, Lili Qiu, Mao Yang, Lidong Zhou

Microsoft Research

https://github.com/microsoft/SparTA/tree/pit_artifact

https://github.com/microsoft/SparTA/tree/pit_artifact


Dynamic Sparsity in Deep Learning Models

- Dynamic sparsity commonly exists in modern deep learning models (e.g., 
LLM), which spans in both

- Weight tensors (pruned models) and activation tensors (sparse attention)

- Input data (varying seq. length) and model architectures (MoE)

- Training and inference

Mixture-of-Experts (MoE)Dynamic Sparse Attention Dynamic sequence length Sparse Training
2



Dynamic Sparsity Hardly Aligned to Accelerators

Dense Matrix Multiplication C=A·B

Tensor A

Tensor B

Dense Tile
in shared
memory

Tile A

Tile B

Sparse Tensor A

Tensor B

Sparse Matrix Multiplication C=A·B

V.S.

3

Computation waste

In global memory In global memory



Dilemma of Tile Covering

Sparse Tensor A

Small Tile

√ Low waste
× Low SM Utilization

4



Dilemma of Tile Covering

Sparse Tensor A

Small Tile

Sparse Tensor A

Large Tile

√ Low waste
× Low SM Utilization

√ High SM Utilization
× High waste

5



Sparsity-Aware Kernels?

- Build fine-grained index (e.g., CSR) to skip 
computation

- Significant overhead during index construction 
and data access

- Worse than the dense counterpart

6



- We want to achieve:
- Use computation-efficient large tiles,
- With low computation waste,
- With minimal data conversion and access overhead.

7



Opportunity: Sparse-to-Dense Transformation

A

B

C=

A·B
m

k

k

n

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

B’

A’

C’=A’ ·B’

Sparse data in A rearranged to 
dense data A’ along m-axis

8

Dense tile computation

Sparse matrices

- Data rearrangement does not affect dense computation

- The rearrangement can be out-of-order



Micro-tile
-- The minimal granularity of rearrangement

- Micro-tile is a small data unit aligned with the hardware read/write 
granularity of an accelerator (e.g., GPU)

- Read/write transaction is as small as 32 bytes in CUDA GPUs

- Enable aligning to every level of an accelerator, e.g., global memory, shared 
memory, computation instructions

A
1 2 3 4 5

C

1
2

3
4Different 

micro-tiles

Sparse matrix

Transaction aligned 
read/write

9

Bank aligned

SM aligned



SRead and SWrite Primitives

SRead and SWrite do online rearrangement of micro-tiles

10

- Rearrangement piggybacked during data 
movement across memory hierarchies

- Random access with zero cost due to 
aligned data granularity (i.e., micro-tile)



SRead and SWrite Primitives

The sparse kernel template in PITSRead and SWrite do online rearrangement of micro-tiles

11



Permutation Invariant Transformation

- An axis of an einsum notation is PIT-axis if and only if any shuffling of 
data on this axis does not affect the correctness of the operator

- All the computations on a PIT-axis are commutative and associative

A PIT rule contains the combination of a PIT-axis, a micro-tile shape, and a dense computation tile.

12



Micro-tile Selection for Kernel Construction

Kernel Perf. 
Assessor

Sparse Tensor 
Samples

Best Micro-tile 
and Kernel

13



Micro-tile Selection for Kernel Compiling

Candidate 
Computation Tile Tile DB

An 
Operator

PIT-axisPIT-axisPIT-axis
Candidate 

Computation Tile
Candidate 

Computation Tile

PIT-axis & 
Computation Tile

PIT-axis & 
Computation Tile

PIT-axis & 
Computation Tile

PIT-axis & 
Computation Tile

Kernel Perf. 
Assessor

Sparse Tensor 
Samples

Best Micro-tile 
and Kernel

14



Online Sparsity Detection and Index Construction

- Minimized construction overhead
- Constructing index without reformatting the sparse tensor (zero copy)

- Parallelized index construction in an out-of-order manner thanks to PIT

- Detecting non-zero values at the granularity of micro-tile

Online constructed index

Input sparse tensor

SRead

Dense tile in shared memory

Micro-tile: 1x4

15



PIT Online Execution Workflow

Generated Sparse 
Kernels

16



Evaluation

- Comprehensive experiments on 
popular models, different datasets, 
precisions, and accelerators

- Evaluated both inference and training

- Compared with 6 end-to-end inference 
libraries

- PyTorch, PyTorch-S, Tutel, DeepSpeed, 
MegaBlocks, TurboTransformer

- Compared with 4 sparse kernel libraries
- cuSPARSE, OpenAI Triton, Sputnik, SparTA

17



Evaluation

- End-to-End Inference of OPT
- 8xV100-32GB GPUs

- FP32 inference latency

- Batch size is 32

- 2.3x, 2.5x, 2.2x faster over PyTorch, PyTorch-S, 
DeepSpeed (OPT-30B)

- Gains from varying seq. length and activation sparse

- Memory usage is similar to the baselines

Activation sparse
optimization

18



Evaluation

- End-to-End Inference of Switch Transformer (MoE)
- 1xA100-80GB GPU

- FP16 inference latency

- Batch size is 8

- 17.8x, 17.5x, 9.8x, 2.8x, 1.6x faster over PyTorch, PyTorch-S, 
Tutel, DeepSpeed, MegaBlocks for 256 experts

- Gain comes from MoE and varying seq. length

- Memory usage is low

MoE
optimization

Conversion
overhead

19



Evaluation

- End-to-End Training of OPT
- 1xA100-80GB GPU

- FP32 training speed

- Batch size is 8 or 4

- 2.3x, 1.8x, 2.1x faster over PyTorch, PyTorch-S, DeepSpeed 
(OPT-1.3B)

- Gain comes from varying seq. length and sparse attention

- Memory usage is low

20



Evaluation

- Sparse Index Conversion Overhead
- 1xV100-32GB GPU

- Index construction latency of a sparse tensor with shape 4096x4096

- Gain comes from out-of-order index construction and zero copy of data

PyTorch-S chooses 
cuSPARSE

PyTorch-S chooses 
OpenAI Triton

21



Conclusion

- PIT demonstrates a novel and effective way of handling dynamic 
sparsity, a growing trend in deep learning especially LLMs

- With permutation invariant transformation, PIT achieves high 
computation efficiency, low computation waste, and minimal data 
conversion overhead

- The idea of decoupling data format and computation logic in PIT can 
be generalized to other scenarios, e.g., low-bit computation, mixed 
precisions

22



Conclusion

- PIT demonstrates a novel and effective way of handling dynamic 
sparsity, a growing trend in deep learning especially LLMs

- With permutation invariant transformation, PIT achieves high 
computation efficiency, low computation waste, and minimal data 
conversion overhead

- The idea of decoupling data format and computation logic in PIT can 
be generalized to other scenarios, e.g., low-bit computation, mixed 
precisions

23

Q&A



Q&A

24



Inefficiency Due to Dynamic Sparsity

Sparse Tensor A

Small Tile

Sparse Tensor A

Large Tile

Sparse Tensor A
PIT Tile

√ Low waste
× Low SM Utilization

√ High SM Utilization
× High waste

√ High SM Utilization
√ Low waste
√ On-the-fly

25



Inefficiency Due to Dynamic Sparsity

Smaller tiles (e.g., 8x8) have poor performance 
due to inefficient tile computation though less 

wasted computation

Sparsity specific kernels requires online data 
format conversion (e.g., CSR), leading to high 

overhead

Is it possible to leverage computation efficient large tiles while introducing low conversion overhead?
26



Opportunity: Sparse-to-dense Transformation

A

B

C=

A·B
m

k

k

n

A

B

C=

A·B
m

k

k

n

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

B’

A’

C’=A’ ·B’

B’

A’

C’=A’ ·B’

1
2

3
4
5

1 2 3 4 5 12345

1
2

3
4

5

27

Dense tile computation

Sparse matrices

Sparse data in A rearranged to 
dense data A’ along m-axis

Sparse data in A rearranged to 
dense data A’ along k-axis


	Slide 1: PIT: Optimization of Dynamic Sparse Deep Learning Models via Permutation Invariant Transformation
	Slide 2: Dynamic Sparsity in Deep Learning Models
	Slide 3: Dynamic Sparsity Hardly Aligned to Accelerators
	Slide 4: Dilemma of Tile Covering
	Slide 5: Dilemma of Tile Covering
	Slide 6: Sparsity-Aware Kernels?
	Slide 7
	Slide 8: Opportunity: Sparse-to-Dense Transformation
	Slide 9: Micro-tile -- The minimal granularity of rearrangement
	Slide 10: SRead and SWrite Primitives
	Slide 11: SRead and SWrite Primitives
	Slide 12: Permutation Invariant Transformation
	Slide 13: Micro-tile Selection for Kernel Construction
	Slide 14: Micro-tile Selection for Kernel Compiling
	Slide 15: Online Sparsity Detection and Index Construction
	Slide 16: PIT Online Execution Workflow
	Slide 17: Evaluation
	Slide 18: Evaluation
	Slide 19: Evaluation
	Slide 20: Evaluation
	Slide 21: Evaluation
	Slide 22: Conclusion
	Slide 23: Conclusion
	Slide 24: Q&A
	Slide 25: Inefficiency Due to Dynamic Sparsity
	Slide 26: Inefficiency Due to Dynamic Sparsity
	Slide 27: Opportunity: Sparse-to-dense Transformation

