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Dynamic Sparsity in Deep Learning Models

- Dynamic sparsity commonly exists in modern deep learning models (e.g., 
LLM), which spans in both

- Weight tensors (pruned models) and activation tensors (sparse attention)

- Input data (varying seq. length) and model architectures (MoE)

- Training and inference

Mixture-of-Experts (MoE)Dynamic Sparse Attention Dynamic sequence length Sparse Training
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Dynamic Sparsity Hardly Aligned to Accelerators
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Dilemma of Tile Covering
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Dilemma of Tile Covering
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Sparsity-Aware Kernels?

- Build fine-grained index (e.g., CSR) to skip 
computation

- Significant overhead during index construction 
and data access

- Worse than the dense counterpart
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- We want to achieve:
- Use computation-efficient large tiles,
- With low computation waste,
- With minimal data conversion and access overhead.
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Opportunity: Sparse-to-Dense Transformation
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Dense tile computation

Sparse matrices

- Data rearrangement does not affect dense computation

- The rearrangement can be out-of-order



Micro-tile
-- The minimal granularity of rearrangement

- Micro-tile is a small data unit aligned with the hardware read/write 
granularity of an accelerator (e.g., GPU)

- Read/write transaction is as small as 32 bytes in CUDA GPUs

- Enable aligning to every level of an accelerator, e.g., global memory, shared 
memory, computation instructions
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SRead and SWrite Primitives

SRead and SWrite do online rearrangement of micro-tiles
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- Rearrangement piggybacked during data 
movement across memory hierarchies

- Random access with zero cost due to 
aligned data granularity (i.e., micro-tile)



SRead and SWrite Primitives

The sparse kernel template in PITSRead and SWrite do online rearrangement of micro-tiles
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Permutation Invariant Transformation

- An axis of an einsum notation is PIT-axis if and only if any shuffling of 
data on this axis does not affect the correctness of the operator

- All the computations on a PIT-axis are commutative and associative

A PIT rule contains the combination of a PIT-axis, a micro-tile shape, and a dense computation tile.
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Micro-tile Selection for Kernel Construction
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Micro-tile Selection for Kernel Compiling
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Online Sparsity Detection and Index Construction

- Minimized construction overhead
- Constructing index without reformatting the sparse tensor (zero copy)

- Parallelized index construction in an out-of-order manner thanks to PIT

- Detecting non-zero values at the granularity of micro-tile

Online constructed index

Input sparse tensor

SRead

Dense tile in shared memory

Micro-tile: 1x4
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PIT Online Execution Workflow

Generated Sparse 
Kernels
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Evaluation

- Comprehensive experiments on 
popular models, different datasets, 
precisions, and accelerators

- Evaluated both inference and training

- Compared with 6 end-to-end inference 
libraries

- PyTorch, PyTorch-S, Tutel, DeepSpeed, 
MegaBlocks, TurboTransformer

- Compared with 4 sparse kernel libraries
- cuSPARSE, OpenAI Triton, Sputnik, SparTA

17



Evaluation

- End-to-End Inference of OPT
- 8xV100-32GB GPUs

- FP32 inference latency

- Batch size is 32

- 2.3x, 2.5x, 2.2x faster over PyTorch, PyTorch-S, 
DeepSpeed (OPT-30B)

- Gains from varying seq. length and activation sparse

- Memory usage is similar to the baselines

Activation sparse
optimization
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Evaluation

- End-to-End Inference of Switch Transformer (MoE)
- 1xA100-80GB GPU

- FP16 inference latency

- Batch size is 8

- 17.8x, 17.5x, 9.8x, 2.8x, 1.6x faster over PyTorch, PyTorch-S, 
Tutel, DeepSpeed, MegaBlocks for 256 experts

- Gain comes from MoE and varying seq. length

- Memory usage is low

MoE
optimization

Conversion
overhead
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Evaluation

- End-to-End Training of OPT
- 1xA100-80GB GPU

- FP32 training speed

- Batch size is 8 or 4

- 2.3x, 1.8x, 2.1x faster over PyTorch, PyTorch-S, DeepSpeed 
(OPT-1.3B)

- Gain comes from varying seq. length and sparse attention

- Memory usage is low
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Evaluation

- Sparse Index Conversion Overhead
- 1xV100-32GB GPU

- Index construction latency of a sparse tensor with shape 4096x4096

- Gain comes from out-of-order index construction and zero copy of data

PyTorch-S chooses 
cuSPARSE

PyTorch-S chooses 
OpenAI Triton
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Conclusion

- PIT demonstrates a novel and effective way of handling dynamic 
sparsity, a growing trend in deep learning especially LLMs

- With permutation invariant transformation, PIT achieves high 
computation efficiency, low computation waste, and minimal data 
conversion overhead

- The idea of decoupling data format and computation logic in PIT can 
be generalized to other scenarios, e.g., low-bit computation, mixed 
precisions
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Q&A



Q&A
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Inefficiency Due to Dynamic Sparsity

Sparse Tensor A

Small Tile

Sparse Tensor A

Large Tile

Sparse Tensor A
PIT Tile

√ Low waste
× Low SM Utilization

√ High SM Utilization
× High waste

√ High SM Utilization
√ Low waste
√ On-the-fly
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Inefficiency Due to Dynamic Sparsity

Smaller tiles (e.g., 8x8) have poor performance 
due to inefficient tile computation though less 

wasted computation

Sparsity specific kernels requires online data 
format conversion (e.g., CSR), leading to high 

overhead

Is it possible to leverage computation efficient large tiles while introducing low conversion overhead?
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Opportunity: Sparse-to-dense Transformation
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Dense tile computation

Sparse matrices

Sparse data in A rearranged to 
dense data A’ along m-axis

Sparse data in A rearranged to 
dense data A’ along k-axis
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