
PipeThreader: Software-Defined Pipelining for
Efficient DNN Execution

Yu Cheng†, Lei Wang†, Yining Shi†, Yuqing Xia ♢, Lingxiao Ma ♢, Jilong Xue ♢, Yang Wang ♢,

Zhiwen Mo ‡♢, Feiyang Chen ¶♢, Fan Yang ♢, Mao Yang ♢, Zhi Yang†

† ♢

¶‡github.com/tile-ai/tilelang

https://github.com/tile-ai/tilelang
https://github.com/tile-ai/tilelang
https://github.com/tile-ai/tilelang

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution 2

Explosive compute demands in the LLM era

- Scaling Law drives ever-larger models

2

Sastry, Girish, et al. "Computing power and the governance of artificial intelligence." arXiv preprint arXiv:2402.08797 (2024).

https://arxiv.org/pdf/2402.08797
https://arxiv.org/pdf/2402.08797
https://arxiv.org/pdf/2402.08797
https://arxiv.org/pdf/2402.08797
https://arxiv.org/pdf/2402.08797

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution 3

Hardware evolves to power the LLM era

- To meet the growing compute demands, hardware vendors have
introduced specialized heterogeneous hardware units

3

NVIDIA H100 GPU

One SM in a NVIDIA H100 GPU

TMA:
memory load & store

TensorCore:
matrix multiplication

CUDA core:
general-purpose
computation

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution 4

Hand-crafted kernels for specialized hardware

- Specialized hardware requires sophisticated hand-crafted kernels for
extreme performance

- E.g., FlashAttention

4

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness."

https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution 5

Challenges of manual kernel optimization

- Different model configurations require reimplementation
- E.g., head dimension = 64, 128, 256, …

5

- Emerging models demand new compute patterns
- E.g., Linear attention, mixed-precision GEMM

- Optimizations are often vendor-specific and don’t transfer well,
especially on less-studied hardware

- E.g., AMD GPUs

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution 6

Call for automated DNN compilation

- Observation
- The complexity primarily lies in pipeline scheduling

- That is, mapping computation tasks to specialized hardware units and
schedule these tasks

6

TensorCore

TMA

CUDA Core

Execution?

Mapping?

Load K

Load V

MatMul-0

Softmax

MatMul-1

A pipelined view
of FlashAttention

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

DNN compiler: no control of pipelining

- Homogenous computation abstraction
- Tasks are treated as the same, executed in a data-

parallel manner

7

A B C A B C

Homogeneous tasks

DFG Compiler

A A B B C C

DFG of operators

EU

Virtualized Device

Time

mapping

C

B

A

C

B

A

EU

Homogeneous HW units

- Homogenous execution unit abstraction
- E.g., Streaming Multiprocessors (SMs) on NVIDIA GPUs

- Leaves pipeline scheduling to hardware
- i.e., warp switching by warp scheduler in SM

- Often suboptimal, may introduce pipeline bubbles

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution 8

Lack of pipeline control leads to hardware underutilization

- FlashAttention-2 only achieves 40% TensorCore utilization on H100

 → FlashAttention-3 emerges ~1 year after H100 enters the market

8

1.77x faster

13.4 ms

23.8 ms

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Example: MatMul + SUM

C[M, N] = A[M, K] x B[K, N] // matrix multiplication

S[M] = sum(C[M, N], dim=-1) // sum over the "N" dimension

9

Pipelined execution

EU

Specialized
execution
units

Time

Tensor
Core

CUDA
Core

MatMul0

Sum0MatMul1

Sum1

Desired approaches

EU

Specialized
execution
units

Time

No overlap between CUDA core
and Tensor core

Tensor
Core

CUDA
Core

MatMul0

Idle Sum0

MatMul1 Idle

Sum1

Existing approach

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution 10

Opportunities and Approach

- Opportunities:
1. New hardware processes data at the tile level, i.e., subtensor

2. DNN computation – analyzable at the tile level

10

- Approach: software-controlled tile-level pipeline scheduling
1. Hardware abstraction

2. DNN workload abstraction

3. Pipeline aware space construction and an efficient two-level
schedule search policy

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Specialization aware hardware abstraction

11

- Solution: two-layer abstraction

Virtual
Device

EU EU

EU EU

Virtual Device

sEU-A

EU

sEU-B

- EU (execution unit)

- Homogeneous hardware units

- Execute in data-parallel manner

- sEU (specialized execution unit)

- Heterogeneous hardware units

- Can execute in pipeline-parallel manner

- E.g., TensorCores, TMA, CUDA cores, …

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Specialized DNN computation abstraction

12

- sTask (specialized tasks)
- E.g., load, mma, sum, …

- sTask-graph
- nodes: sTasks in the computation task

- edges: dependencies across sTasks

Example: MatMul+Sum

A B0×

mma-0

A B1×

mma-1

S0

sum-0

S1

sum-1

sTask-graph

Matmul-
Sum

A

S

B

DNN operator

TensorCore

CUDA Core

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Execution plan construction and scheduling primitives

13

- Mapping sTask-graph to sEUs
- Which sTask should execute on

which EU/sEU?

- When should each sTask be
executed?

- Scheduling primitives
- Append

- Wait

- Propagate

Tensor
Core

CUDA
Core

A0

B0

A1

B1

B2

A2

Tensor
Core

CUDA
Core

A0

B0A1

B1

B2

A2

Tensor
Core

CUDA
Core

A0

A0 B0

B1

time

Schedule #0 Schedule #1 Schedule #2

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Efficient search policy

14

- Intra-EU scheduling

- How should the sTasks run across sEUs within an EU

A B

Operator graph

A B A B

sTask-graphs

A B A B

map EU

EU

sTask-graph
partition

propagate

A B A B

sTask-graph

order

EU

A
A
A

B
B
B

sEU sEU

Scheduling plan

wait
append

- Inter-EU scheduling

- sTasks-graph partition across EUs

- Two-level scheduling

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Example: FlashAttention

15

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Adapting to diverse model configurations

16

- Match or exceed the performance of FlashAttention-3 across a
wide range of configurations

- Up to 2.18x speedup vs. FlashAttention-3

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Optimization for emerging models

17

- Find better schedule on Mamba2
- 1.71x and 1.98x avg. speedup over Triton on

linear attention operations (ChunkState and
ChunkScan)

- 1.92x/45.93x avg. end-to-end speedup over
PyTorch-Inductor/Ladder

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Extending to less-studied hardware (AMD MI300X)

- LLAMA3: 1.48x/1.07x avg. speedup over PyTorch-Inductor/Ladder

- Mamba2: 1.31x/32.93x avg. speedup over PyTorch-Inductor/Ladder

18

Data of LLAMA and Mamba2 are evaluated on a single layer (more details and evaluation in paper).

PipeThreader: Software-Defined Pipelining for Efficient DNN Execution

Conclusion
- Hardware schedulers are no longer sufficient for efficient pipeline execution

- PipeThreader proposes:
- sEU: expose heterogeneous specialized execution units of modern AI accelerators

- sTask and sTask-graph: expose fine-grained pipeline parallelism at tile level

- Scheduling primitives: build efficient pipeline schedules

- PipeThreader has been integrated into TileLang, a DSL for high-performance AI
kernel development

19

TileLang GitHub Repo

https://github.com/tile-ai/tilelang

Thank you!

https://github.com/tile-ai/tilelang
https://github.com/tile-ai/tilelang
https://github.com/tile-ai/tilelang

	Untitled Section
	Slide 1: PipeThreader: Software-Defined Pipelining for Efficient DNN Execution
	Slide 2: Explosive compute demands in the LLM era
	Slide 3: Hardware evolves to power the LLM era
	Slide 4: Hand-crafted kernels for specialized hardware
	Slide 5: Challenges of manual kernel optimization
	Slide 6: Call for automated DNN compilation
	Slide 7: DNN compiler: no control of pipelining
	Slide 8: Lack of pipeline control leads to hardware underutilization
	Slide 9: Example: MatMul + SUM
	Slide 10: Opportunities and Approach
	Slide 11: Specialization aware hardware abstraction
	Slide 12: Specialized DNN computation abstraction
	Slide 13: Execution plan construction and scheduling primitives
	Slide 14: Efficient search policy
	Slide 15: Example: FlashAttention
	Slide 16: Adapting to diverse model configurations
	Slide 17: Optimization for emerging models
	Slide 18: Extending to less-studied hardware (AMD MI300X)
	Slide 19: Conclusion

