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Explosive compute demands in the LLM era

- Scaling Law drives ever-larger models 
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Hardware evolves to power the LLM era

- To meet the growing compute demands, hardware vendors have 
introduced specialized heterogeneous hardware units
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NVIDIA H100 GPU

One SM in a NVIDIA H100 GPU

TMA:
memory load & store

TensorCore: 
matrix multiplication

CUDA core:
general-purpose 
computation
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Hand-crafted kernels for specialized hardware

- Specialized hardware requires sophisticated hand-crafted kernels for 
extreme performance

- E.g., FlashAttention
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Challenges of manual kernel optimization

- Different model configurations require reimplementation
- E.g., head dimension = 64, 128, 256, …
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- Emerging models demand new compute patterns
- E.g., Linear attention, mixed-precision GEMM

- Optimizations are often vendor-specific and don’t transfer well, 
especially on less-studied hardware

- E.g., AMD GPUs
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Call for automated DNN compilation

- Observation
- The complexity primarily lies in pipeline scheduling

- That is, mapping computation tasks to specialized hardware units and 
schedule these tasks
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TensorCore

TMA

CUDA Core

Execution?

Mapping?

Load K

Load V

MatMul-0

Softmax

MatMul-1

A pipelined view 
of FlashAttention
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DNN compiler: no control of pipelining

- Homogenous computation abstraction
- Tasks are treated as the same, executed in a data-

parallel manner
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Homogeneous tasks

DFG Compiler
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DFG of operators 
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Homogeneous HW units

- Homogenous execution unit abstraction
- E.g., Streaming Multiprocessors (SMs) on NVIDIA GPUs 

- Leaves pipeline scheduling to hardware
- i.e., warp switching by warp scheduler in SM

- Often suboptimal, may introduce pipeline bubbles
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Lack of pipeline control leads to hardware underutilization

- FlashAttention-2 only achieves 40% TensorCore utilization on H100

  → FlashAttention-3 emerges ~1 year after H100 enters the market
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1.77x faster

13.4 ms

23.8 ms
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Example: MatMul + SUM

C[M, N] = A[M, K] x B[K, N]              // matrix multiplication

S[M] = sum(C[M, N], dim=-1)         // sum over the "N" dimension
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Pipelined execution 
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Opportunities and Approach

- Opportunities:
1. New hardware processes data at the tile level, i.e., subtensor

2. DNN computation – analyzable at the tile level 
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- Approach: software-controlled tile-level pipeline scheduling
1. Hardware abstraction

2. DNN workload abstraction

3. Pipeline aware space construction and an efficient two-level 
schedule search policy
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Specialization aware hardware abstraction
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- Solution: two-layer abstraction

Virtual 
Device

EU EU

EU EU

Virtual Device

sEU-A

EU

sEU-B

- EU (execution unit)

- Homogeneous hardware units

- Execute in data-parallel manner

- sEU (specialized execution unit)

- Heterogeneous hardware units

- Can execute in pipeline-parallel manner

- E.g., TensorCores, TMA, CUDA cores, …
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Specialized DNN computation abstraction
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- sTask (specialized tasks)
- E.g., load, mma, sum, …

- sTask-graph
- nodes: sTasks in the computation task

- edges: dependencies across sTasks

Example: MatMul+Sum

A B0×

mma-0

A B1×

mma-1

S0

sum-0

S1

sum-1

sTask-graph

Matmul-
Sum

A

S

B

DNN operator

TensorCore

CUDA Core
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Execution plan construction and scheduling primitives
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- Mapping sTask-graph to sEUs
- Which sTask should execute on 

which EU/sEU?

- When should each sTask be 
executed?

- Scheduling primitives
- Append

- Wait

- Propagate
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Efficient search policy
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- Intra-EU scheduling 

- How should the sTasks run across sEUs within an EU

A B

Operator graph

A B A B

sTask-graphs
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- Inter-EU scheduling 

- sTasks-graph partition across EUs

- Two-level scheduling 
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Example: FlashAttention
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Adapting to diverse model configurations
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- Match or exceed the performance of FlashAttention-3 across a 
wide range of configurations

- Up to 2.18x speedup vs. FlashAttention-3
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Optimization for emerging models
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- Find better schedule on Mamba2
- 1.71x and 1.98x avg. speedup over Triton on 

linear attention operations (ChunkState and 
ChunkScan)

- 1.92x/45.93x avg. end-to-end speedup over 
PyTorch-Inductor/Ladder
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Extending to less-studied hardware (AMD MI300X)

- LLAMA3: 1.48x/1.07x avg. speedup over PyTorch-Inductor/Ladder

- Mamba2: 1.31x/32.93x avg. speedup over PyTorch-Inductor/Ladder
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Data of LLAMA and Mamba2 are evaluated on a single layer (more details and evaluation in paper).
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Conclusion
- Hardware schedulers are no longer sufficient for efficient pipeline execution

- PipeThreader proposes:
- sEU: expose heterogeneous specialized execution units of modern AI accelerators

- sTask and sTask-graph: expose fine-grained pipeline parallelism at tile level

- Scheduling primitives: build efficient pipeline schedules

- PipeThreader has been integrated into TileLang, a DSL for high-performance AI 
kernel development

19

TileLang GitHub Repo

https://github.com/tile-ai/tilelang

Thank you!
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