

WaferLLM: Large Language Model Inference at Wafer Scale

Congjie He¹, Yeqi Huang¹, Pei Mu¹, Ziming Miao², Jilong Xue², Lingxiao Ma², Fan Yang², Luo Mai¹

University of Edinburgh¹, Microsoft Research²

The challenge for scaling LLM inference

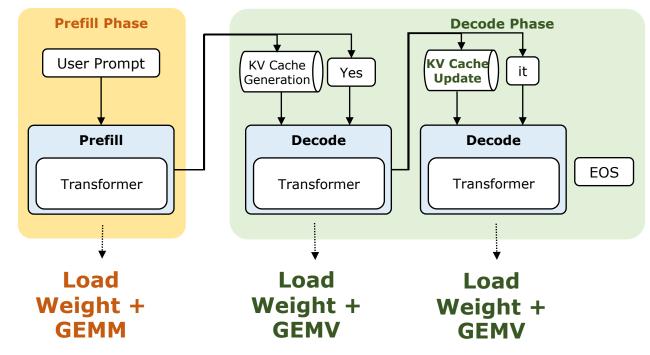
LLM needs tremendous bandwidth

- Massive model weights & KV cache are repeatedly accessed
- Example: ~100s TB/s for DeepSeek-R1 (10K tokens/s per request)

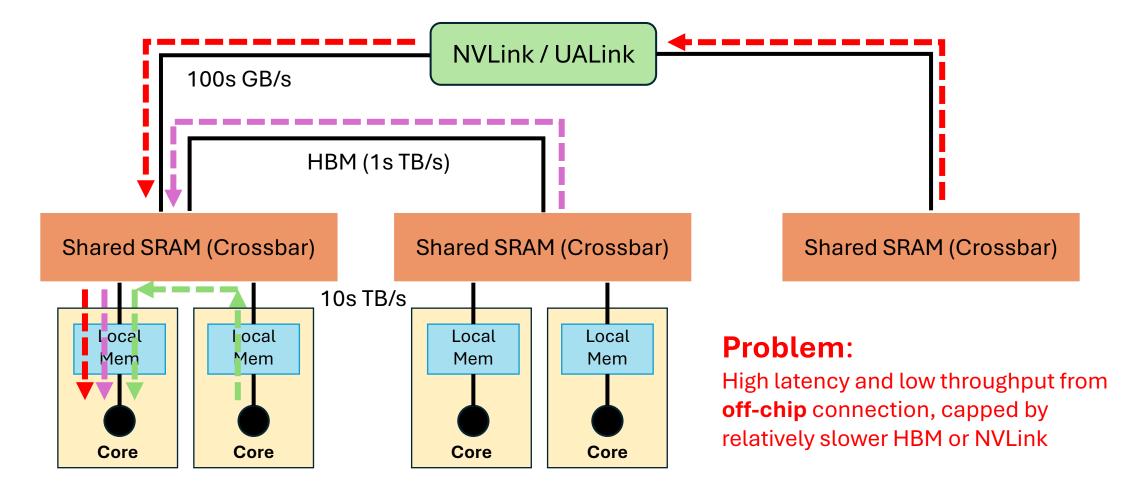
Test-time Scaling and Al Agents need more

- Deep thinking for each request
- Agent-agent interaction
 - Millions of tokens/s per request

LLM inference process



Today's AI systems primarily use off-chip scaling



Efficient on-chip scaling with wafer-scale integration

Massive cores in a mesh-like topology

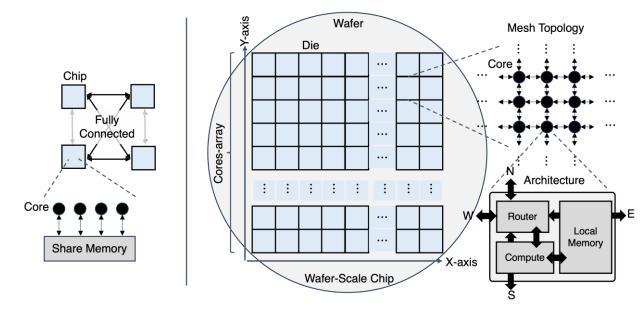
10s of times bigger chip size than a typical die

Efficient integration on a single wafer

- Memory (~10s GB SRAM)
- Compute (~10s PFLOPS dense FP16)
- Memory bandwidth (~10s PB/s)
- NoC bandwidth (~100s Pbits/s)

Complementary to off-chip scaling

- Cerebras: Memory-X clusters (PB-scale) [1]
- Tesla Dojo: HBM/DRAM on switch [2]



Off-chip scaling via NVLink/IB

On-chip scaling via waferscale integration

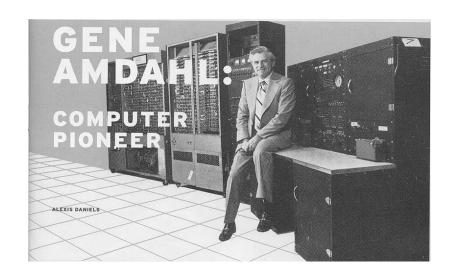
Imagine to fit the entire rack into a wafer

^[1] https://www.cerebras.ai/press-release/cerebras-systems-announces-worlds-first-brain-scale-artificial-intelligence-solution

^[2] https://hc2024.hotchips.org/assets/program/conference/day2/17_HC2024_Tesla_TTPoE_v5.pdf

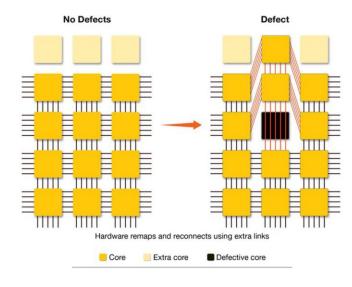
Wafer-scale Integration. Why not before?

- Gene Amdahl shared a similar observation [1]
 - The pioneer of mainframe machines
 - The author of Amdahl's Law
- Amdahl co-founded Trilogy Systems
 - Attempted to design the first wafer-scale chips
 - The biggest investment (\$200M) in Silicon Valley in the 1980s
- Trilogy Systems failed due to
 - · Low yields at wafer-scale
 - Weak market demand

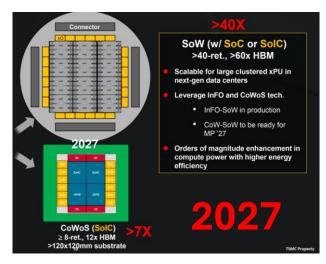


What has changed in 40 years?

- Al chases extreme efficiency/performance
- Hardware remapping
 - Cores are made small to limit chip defect scope
 - Bypass the defective core with redundant wires
- Remapping becomes viable and cost-effective
 - Small yet fast cores: WSE-3 core = 0.7% size of NV H100 SM
 - High yield: 93% core active (WSE-3) vs 92% (NV H100)
- A wave of wafer-scale computers is coming
 - >40X compute and bandwidth expected by 2027 [2]
 - Advanced packaging (CoWoS), 3DIC (TSMC SoIC)



Example of hardware remapping [1]



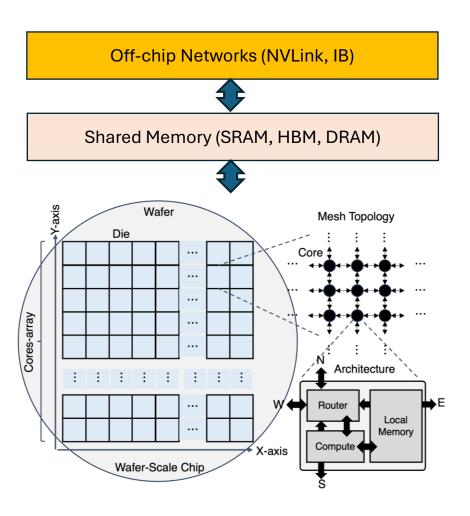
TSMC Roadmap – System-on-Wafer[2]

Today's wafer-scale integration has shown great promise

	System-on-Die	System-on-Wafer	
Area	Typically 858 mm^2	Typically 73062 mm^2	
#Transistors (TSMC n3)	1 trillion	Up to 91 trillion	
Interconnect	PCB/RDL/SUB/WoW	Wafer	
Die-to-die efficiency	~10s pJ/bit	~0.1s pJ/bit	~100x
Die-to-die bandwidth	~ 1-10s TB/s	~ 10 - 100s TB/s	~100x
Memory Bandwidth	10s TB/s (crossbar)	10s PB/s (aggregated via mesh)	~1,000x
Off-chip memory	10s - 100s GB HBM	10s TB DRAM via Ethernet 10s TB HBM/DRAM via TSMC SoW in 2027	

- **Emerging wafer-scale systems**: Cerebras, Tesla Dojo, NVIDIA and more reported by TSMC
- **Growing adoption**: Perplexity, Mixtral, Meta AI, G42, ...

Are LLM systems ready for wafer-scale chips?



Extensive research on scaling LLM with off-chip networks

- Topology: Clos, 3D-Torus
- System: Megatron-LM
- Multi-dimensional Parallelism: TP, PP, DP, EP
- Communication Operator: Ring allreduce, All-to-All for MoE

Extensive research on LLM with on-chip shared memory

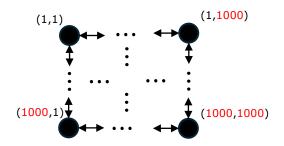
- Operator: FlashAttention, MLA, PageAttention,
- Compiler: Ladder [OSDI'24], and T10 [SOSP'24]

Wafer-scale AI software remains largely unexplored

- Existing NoC research targets CPUs and small scale (up to 100s)
- Suffer severe communication bottlenecks
- ...

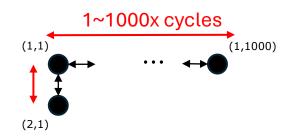
PLMR – a hardware model to describe wafer-scale chip

1. Million-scale Parallelism (PLMR)



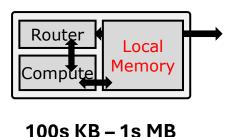
From hundreds of parallelism in a crossbar **to** millions of parallelism in a mesh

2. Highly non-uniform access Latency (PLMR)



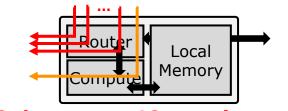
From shared memory and small NUMA to large-scale nonuniform memory

3. Constrained local Memory (PLMR)



From coarsegrained tile pipeline to fine-grained tile pipeline

4. Constrained Routing resources (PLMR)



From centralized routing to decentralised NoC routing

Only support 10s routing entries

Routing on NoC

Routing on Compute Engine

PLMR – a hardware model to describe wafer-scale chip

1. Million-scale Parallelism (PLMR)

From hundreds of parallelism in a crossbar **to** millions of

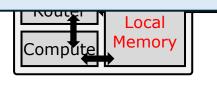
2. Highly non-uniform access Latency (PLMR)

From shared memory and small NUMA to large-scale non-

From centralized routing

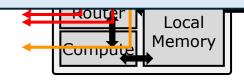
to decentralised NoC

PLMR model - The key technological shift is moving from shared-memory architectures to on-chip large-scale, distributed memory systems



100s KB - 1s MB

From coarsegrained tile pipeline to fine-grained tile pipeline



routing

Only support 10s routing entries

Routing on NoC

Routing on Compute Engine

WaferLLM: World-first wafer-scale LLM inference system

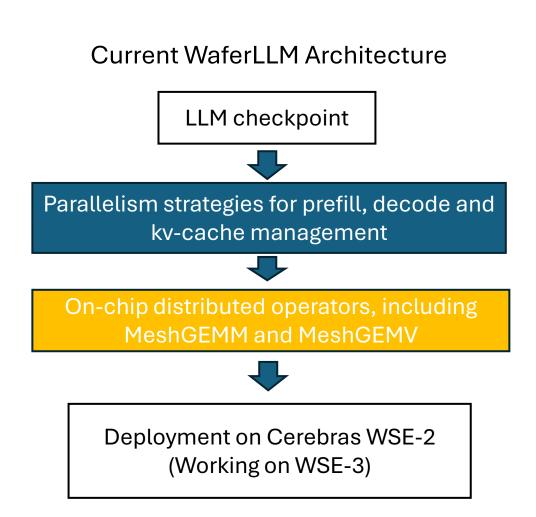
Goals

- Design the entire stack guided by PLMR
- Generalise across hardware backends

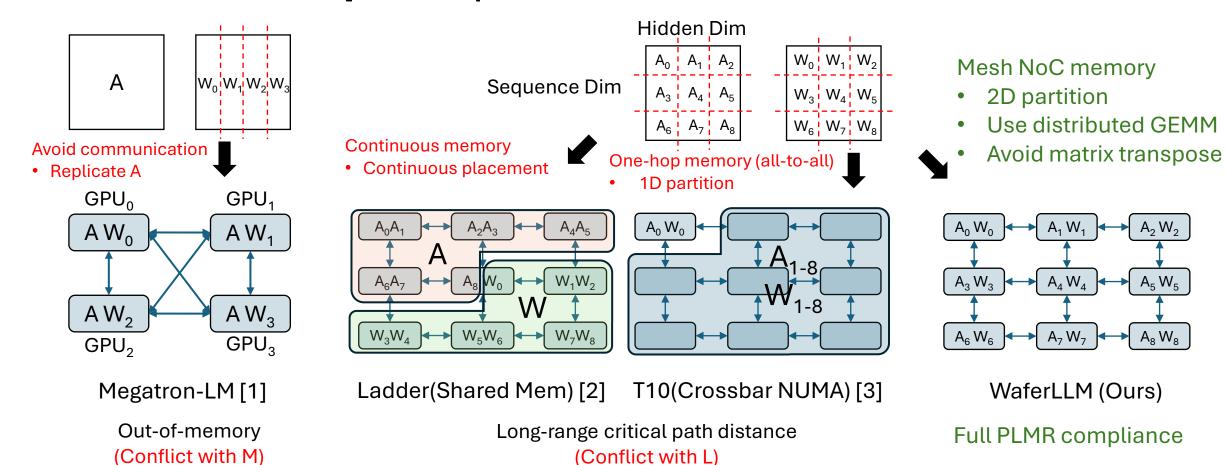
Contributions

- New prefill parallelism strategies
- New decode parallelism strategies
- New KV-cache algorithm Shift-based update
- New GEMM algorithm MeshGEMM
- New GEMV algorithm MeshGEMV

First LLM inference system to reach 2700 token/s per request



How to scale **prefill** parallelism?



- Achieving PLMR compliance can lead to 372x gains over Ladder with LLaMA2-13B
- Also 113x over T10 with LLaMA2-13B

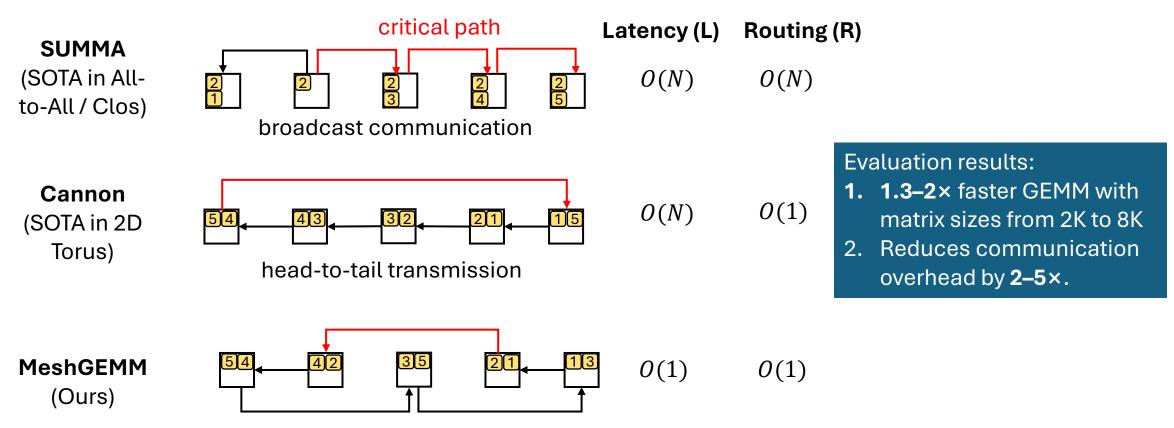
^[1] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, https://github.com/NVIDIA/Megatron-LM

^[2] Ladder: Enabling Efficient Low-Precision Deep Learning Computing through Hardware-aware Tensor Transformation, OSDI 2024

^[3] Scaling Deep Learning Computation over the Inter-Core Connected Intelligence Processor with T10, SOSP 2024

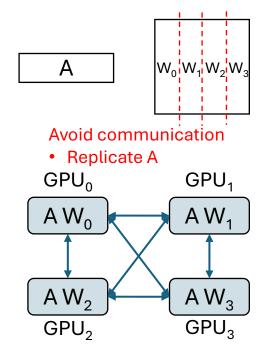
Accelerating prefill with MeshGEMM

Prefill is bottlenecked by GEMM, which requires each submatrix to traverse all row (or column) cores, constrained by properties L and R.



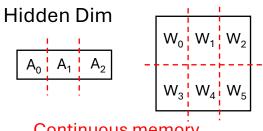
Key techniques: Cyclic Shifting and Interleave

How to scale decode parallelism?



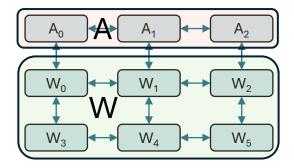
Megatron-LM

Insufficient parallelism (Conflict with P)

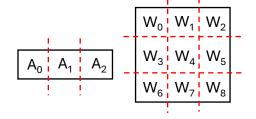


Continuous memory

Continuous placement

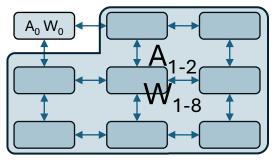


Ladder (Shared Mem)



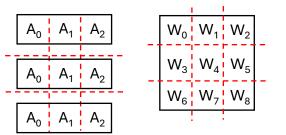
One-hop memory (all-to-all)

1D partition



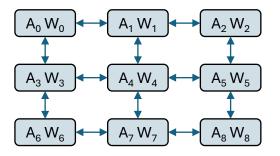
T10 (Crossbar NUMA)

Long-range path& insufficient parallelism (Conflict with L and P)



Mesh NoC-based memory

- Partition & replicate
- Applied distributed GEMV
- Avoid vector transpose



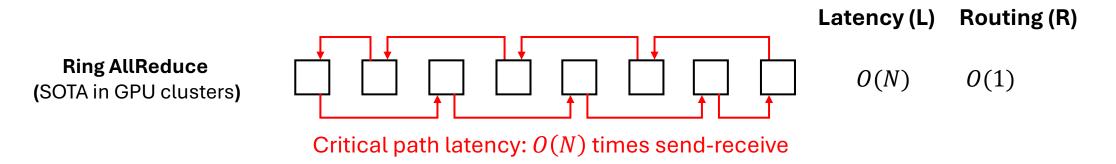
WaferLLM (Ours)

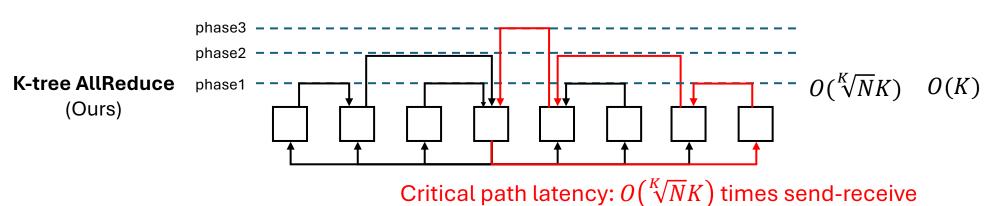
Achieving P, L,M and R

- WaferLLM outperforms Ladder by 185x with LLaMA2-13B
- Also 6x over T10 with LLaMA2-13B

Accelerating decode with MeshGEMV

GEMV is bottlenecked by all-reduce, decided by properties L and R

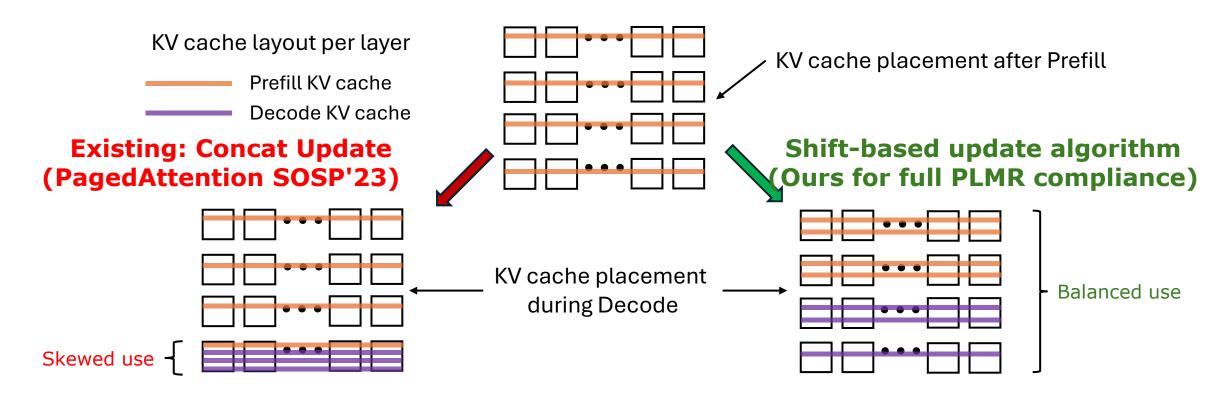




Evaluation results:
1. 2.5-3X faster
GEMV with vector
sizes from 2K to 8K.
2. Reduces
communication
overhead by 1.5-6X.

Key technique: tree-based grouped parallel reduction

Scale KV-cache management using shift update



- Avoid out-of-memory caused by skewed core usage (M)
- Rebalance via data movement between adjacent cores (L)
- The maximum inference length improves several 100x

Comparison with SOTA off-chip scaling on LLM inference

We compare WaferLLM on real Cerebras WSE-2 chip (TSMC 7nm) with SGLang/vLLM on NVLink/IB-connected A100 GPU (TSMC 7nm) in performance and energy efficiency

Decode (4K in, 4K out, BSZ=1)	LlaMA3-8B		
SGLang (A100)	1 GPU	8 GPUs	2x8 GPUs
Token/s per request	78	260	164
WaferLLM (WSE-2) Tokens/s per request		2700	
A100/WSE-2 Energy Ratio	0.92	2.22	7.02

- WaferLLM delivers 6-20x faster than SoTA off-chip solutions on LLM model size range from 8B to 70B
- 2-2.5x energy efficiency than GPU interconnect currently the only one on the market beyond NVLink
- WaferLLM with wafer-scale chip outperforms best-case off-chip scaling in both speed and efficiency

WaferLLM: The first step of our long journey

Align AI model designs with wafer-scale systems

- New model architectures?
- New training and inference algorithms?

Rethink software designs

- Operating system for wafer-scale computers?
- Distributed programming libraries?

Explore new hardware designs

- Better core design?
- Better interconnect designs?

Acknowledgement: Hardware support from

- Edinburgh International Data Facility (EIDF)
- Edinburgh Parallel Computing Centre (EPCC)

Thank you!

https://github.com/MeshInfra/WaferLLM